lunes, 16 de abril de 2012

Trabajo y Energia


En mecánica clásica, el trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo.1 El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios ojoules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Matemáticamente se expresa como:
W = \mathbf F \cdot \mathbf d = F d \cos\alpha
Donde F es el módulo de la fuerzad es el desplazamiento y \alpha es el ángulo que forman entre sí el vector fuerza y el vector desplazamiento (véase dibujo).
Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.

Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F\mathbf r y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = 
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.
El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales\mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
Esto es, el trabajo viene dado por la integral curvilínea de \mathbf F a lo largo de la curva C que une los dos puntos; en otras palabras, por la circulación de \mathbf F sobre la curva C entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf F sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.
En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección3 y sentido4 ), se tiene que
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r =
\mathbf F \cdot \int_{\text{A}}^{\text{B}} \mathrm d \mathbf r =\mathbf F \cdot \Delta \mathbf r =
F s \cos \theta
es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final.
Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces  \mathbf F  representará al vector resultante de todas las fuerzas aplicadas.

Diagrama de Cuerpo Libre

Un diagrama de cuerpo libre es una representación gráfica utilizada a menudo por físicos e ingenieros para analizar las fuerzas que actúan sobre un cuerpo libre. El diagrama de cuerpo libre es un elemental caso particular de un diagrama de fuerzas. En español, se utiliza muy a menudo la expresión diagrama de fuerzas como equivalente a diagrama de cuerpo libre, aunque lo correcto sería hablar de diagrama de fuerzas sobre un cuerpo libre o diagrama de fuerzas de sistema aislado. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean para el análisis de las fuerzas internas que actúan en estructuras.



Un esquema del cuerpo en cuestión y de las fuerzas que actúan sobre él representadas como vectores. La elección del cuerpo es la primera decisión importante en la solución del problema. Por ejemplo, para encontrar las fuerzas que actúan sobre una bisagra o un alicate,es mejor analizar solo una de las dos partes, en lugar del sistema entero, representando la segunda mitad por las fuerzas que ejerce sobre la primera.r]

Fuerzas internas desarrolladas en elementos estructurales

Para diseñar un elemento estructural o mecánico es necesario conocer la carga que actúa dentro de él para asegurarnos de que el material puede resistir esta carga. Las cargas internas pueden determinarse por el método de secciones, seccionando o cortando imaginariamente una sección perpendicular al eje de la viga. Las cargas internas que actúan sobre el elemento quedarán expuestas y se volverán externas en el diagrama de cuerpo libre de cada segmento.
  • Los componentes de la fuerza (N) que actúa en perpendicular a la sección transversal se denomina fuerza Normal.
  • Los componentes de la fuerza (V) que es tangente a la sección transversal se llama fuerza cortante.
  • El momento de par (M) se conoce como momento flector.3

]Lo que hay que incluir

El esquema del cuerpo debe llegar solo al nivel de detalle necesario. Un simple esbozo puede ser suficiente y en ocasiones, dependiendo del análisis que se quiera realizar, puede bastar con un punto.
Todos las fuerzas externas se representan mediante vectores etiquetados de forma adecuada. Las flechas indican la dirección y magnitud de las fuerzas y, en la medida de lo posible, deberían situarse en el punto en que se aplican.
Solo se deben incluir las fuerzas que actúan sobre el objeto, ya sean de rozamientogravitatoriasnormales, de arrastre o de contacto. Cuando se trabaja con un sistema de referencia no inercial, es apropiado incluir fuerzas ficticias como la centrífuga.
Se suele trabajar con el sistema de coordenadas más conveniente, para simplificar las ecuaciones. La dirección del eje x puede hacerse coincidir con la dirección de descenso de un plano inclinado, por ejemplo, y así la fuerza de rozamiento sólo tiene componente en esa coordenada, mientras que la normal sigue el eje y. La fuerza gravitatoria, en este caso , tendrá componentes según los dos ejes, mg \sin(\theta)\, en el x y mg \cos(\theta)\, en el y, donde θ es el ángulo que forma el plano con la superficie horizontal.

Lo que no hay que incluir
Las fuerzas que el cuerpo ejerce sobre otros cuerpos. Por ejemplo, si una pelota permanece en reposo sobre una mesa, la pelota ejerce una fuerza sobre ésta, pero en el diagrama de cuerpo libre de la primera solo hay que incluir la fuerza que la mesa ejerce sobre ella.
También se excluyen las fuerzas internas, las que hacen que el cuerpo sea tratado como un único sólido. Por ejemplo, si se analiza las fuerzas que aparecen en los soportes de una estructuramecánica compleja, como el tablero de un puente, las fuerzas internas de las distintas partes que lo forman no se tienen en cuenta.]

Suposiciones

El diagrama de cuerpo libre refleja todas las suposiciones y simplificaciones que se han hecho para analizar el problema. Si el cuerpo en cuestión es un satélite en órbita y lo único que se desea es encontrar su velocidad, un punto puede ser la mejor opción. Los vectores deben colocarse y etiquetarse con cuidado para evitar suposiciones que condicionen el resultado. En el diagrama ejemplo de esta entrada, la situación exacta de la fuerza normal resultante que la rampa ejerce sobre el bloque solo puede encontrarse después de analizar el movimiento o de asumir que se encuentra en equilibrio.

Movimiento Rectilineo Uniforme Acelerado


El movimiento rectilíneo uniformemente acelerado (MRUA), también conocido como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante.
Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la aceleración interviniente, y considerada constante, es la que corresponde a la gravedad.
También puede definirse el movimiento como el que realiza una partícula que partiendo del reposo es acelerada por una fuerza constante.
El movimiento rectilíneo uniformemente acelerado (MRUA) es un caso particular del movimiento uniformemente acelerado (MUA).

En mecánica clásica el movimiento rectilíneo uniformemente acelerado (MRUA) presenta tres características fundamentales:
  1. La aceleración y la fuerza resultante sobre la partícula son constantes.
  2. La velocidad varía linealmente respecto del tiempo.
  3. La posición varía según una relación cuadrática respecto del tiempo.
La figura muestra las relaciones, respecto del tiempo, del desplazamiento (parábola), velocidad (recta con pendiente) y aceleración (constante, recta horizontal) en el caso concreto de la caída libre (con velocidad inicial nula).
El movimiento MRUA, como su propio nombre indica, tiene una aceleración constante, cuyas relaciones dinámicas y cinemáticas, respectivamente, son:
(1) a(t) = a = \frac{F}{m} = \frac{d^2x}{dt^2}
En el movimiento rectilíneo acelerado, la aceleración instantánea es representada como la pendiente de la recta tangente a la curva que representa gráficamente la función v(t).
La velocidad v para un instante t dado es:
(2a)v(t)=at+ v_0 \,
siendo v_0\, la velocidad inicial.
Finalmente la posición x en función del tiempo se expresa por:
(3) x(t) = \frac {1}{2} a t^2  + v_0t + x_0
donde x_0\, es la posición inicial.
Además de las relaciones básicas anteriores, existe una ecuación que relaciona entre sí el desplazamiento y la rapidez del móvil. Ésta se obtiene despejando el tiempo de (2a) y sustituyendo el resultado en (3):
(2b)v^2= 2 a (x - x_0) + v_0^2 \,

Movimiento Rectilineo Uniforme


V(Velocidad)= constante.
Un movimiento es rectilíneo cuando el cuerpo describe una trayectoria recta, y es uniforme cuando su velocidad es constante en el tiempo, dado que su aceleración es nula. Nos referimos a él mediante el acrónimo MRU.
El MRU (movimiento rectilíneo uniforme) se caracteriza por:
  • Movimiento que se realiza sobre una línea recta.
  • Velocidad constante; implica magnitud y dirección constantes.
  • La magnitud de la velocidad recibe el nombre de celeridad o rapidez.
  • Aceleración nula.


1a)Método numérico (con formulas) 2a)Método gráfico (con gráficas)
La distancia recorrida se calcula multiplicando la magnitud de la velocidad media (velocidad o rapidez) por el tiempo transcurrido. Esta relación también es aplicable si la trayectoria no es rectilínea, con tal que la rapidez o módulo de la velocidad sea constante llamado movimiento de un cuerpo.
Al representar gráficamente la velocidad en función del tiempo se obtiene una recta paralela al eje de abscisas (tiempo). Además, el área bajo la recta producida representa la distancia recorrida.
La representación gráfica de la distancia recorrida en función del tiempo da lugar a una recta cuya pendiente se corresponde con la velocidad.
Por lo tanto el movimiento puede considerarse en dos sentidos; una velocidad negativa representa un movimiento en dirección contraria al sentido que convencionalmente hayamos adoptado como positivo.
De acuerdo con la Primera Ley de Newton, toda partícula permanece en reposo o en movimiento rectilíneo uniforme cuando no hay una fuerza neta que actúe sobre el cuerpo. Esta es una situación ideal, ya que siempre existen fuerzas que tienden a alterar el movimiento de las partículas, por lo que en el movimiento rectilíneo uniforme (M.R.U) es difícil encontrar la fuerza amplificada, a tiempos iguales distancias iguales

Sistema Numerico


En aritméticaálgebra y análisis matemático, un sistema numérico es un conjunto provisto de dos operaciones que verifican ciertas condiciones.
Los sistemas numéricos se caracterizan por tener cierta estructura algebraica (monoideanillocuerpoálgebra sobre un cuerpo), además de algunas propiedades de orden (orden totalbuen orden) y posiblemente algunas propiedades topológicas y analíticas (densidadmetrizabilidadcompletitud).

Convencionalmente diversos conjuntos dotados de "adición" y "multiplicación" se llaman sistemas numéricos. Entre estos conjuntos están los números naturales, los enteros, los racionales, los reales y los complejos, aunque existen otros que generalizan a algunos de los anteriores. Aunque no existe una definción formal de sistema numérico, todos los conjuntos dotados de operaciones binarias que se cuentan convencionalmente entre los sistemas numéricos tienen propiedades comunes.
En todos los sistemas numéricos convencionales hay definidas dos operaciones binarias asociativas denominadas adición y multiplicación, y además se cumple que la multiplicación es distributiva con respecto a la adición. La adición es siempre conmutativa, aunque en algunos sistemas numéricos la multiplicación no siempre es conmutativa1 ): Para a, b y c elementos cualesquiera de \mathbb S :
  • Propiedad conmutativa de la adición: a + b = b + a
  • Propiedad asociativa de la adición: (a + b) + c = a + (b + c)
  • Propiedad asociativa de la multiplicación: (a • b) • c = a • (b • c)
  • Propiedad distributiva de la multiplicación sobre la adición: a • (b + c) = a • b + a • c
La adición y la multiplicación no necesariamente deben ser las de la aritmética elemental.
Más formalmente un sistema numérico se caracterizan por una séxtupla \scriptstyle (\mathbb{S},+,\cdot,\mathcal{A},\mathcal{O},\mathcal{T}), donde:
\scriptstyle \mathcal{A} es un conjunto de axiomas que definen las propiedades algebraicas de las operaciones y conjeturan la posible existencia de cierto tipo de elementos (opuestos, inversos, etc.)
\scriptstyle \mathcal{O} es un conjunto de axiomas referidos a la teoría del orden, que dan cuenta de ciertas propiedades asociadas a la relaciones existentes ente los elementos.
\scriptstyle \mathcal{T} es un conjunto de axiomas topológicos, que posiblemente incluyen la definición de ciertas funciones (distancia) y propiedades (completitud, densidad, etc.